Improve drilling efficiency with predictive analytics on contextualized data
ثبت نشده
چکیده
Embedded sensors, connected to the industrial internet of things (IIoT), have increased the granularity and frequency of data collected during the drilling process – but the data is often siloed and underutilized. This lack of integration can lead to expensive, time-consuming problems during the drilling process. Inefficient drilling programs can have an even greater aggregate financial impact, causing cost over-runs, delays in well completions and production on-stream dates, unexpected shutdowns and accidents.
منابع مشابه
Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملMining Massive Fine-Grained Behavior Data to Improve Predictive Analytics
Organizations increasingly have access to massive, fine-grained data on consumer behavior. Despite the hype over “big data,” and the success of predictive analytics, only a few organizations have incorporated such finegrained data in a non-aggregated manner into their predictive analytics. This paper examines the use of massive, fine-grained data on consumer behavior—specifically payments to a ...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملRealtime Predictive and Prescriptive Analytics with Real-time Data and Simulation
The past few years have experienced tremendous growth in the use of simulation to improve the work place and the efficiency of every operation. Although processor speeds have increased at a very fast pace, simulation, due to its extensive computational and visualization requirements, have consistently challenged and used the processors to their full power. Moreover, with the evolving 64bit simu...
متن کامل